Prof. H.Y. Kim's research paper has been listed in International Journal of Precision Engineering and Manufacturing Identifying Abnormal CFRP Holes Using Both Unsupervised and Supervised Learning Techniques on In‑Process Force, Current > NEWS

본문 바로가기

NEWS

News

Prof. H.Y. Kim's research paper has been listed in International Journ…

profile_image
최고관리자
2024-07-30 11:54 122 0
  • - 첨부파일 : 스크린샷 2024-10-07 071913.png (122.9K) - 다운로드

본문

Abstract

This study aims to conduct abnormality detection by applying machine learning algorithms when drilling a carbon fiber reinforced plastic laminate. In-process signals including current, thrust force, and vibration were captured during the dry drilling experiments using a 6 mm physical vapor deposit diamond-coated drill at the consistent spindle speed of 6500 RPM and 0.05 mm/rev. Across measurements from out-of-process variables, including hole diameter, roundness, surface roughness, entry/exit delamination, and entry/exit uncut fiber area, in-process measurements were most able to find outliers with respect to diameter. Both Principal Component Analysis, an unsupervised dimensionality reduction technique, and Linear Discriminant Analysis, a supervised dimensionality reduction technique, could separate oversize or undersize holes from average-sized holes when using fast Fourier transformation data of in-process vibration. Predictive performance with k-Nearest Neighbors shows that our machine learning pipeline can predict oversized vs. non-oversized holes with over 85% accuracy in this dataset. Peak prediction performance is obtained when in-process measurement data is viewed from the frequency domain, and predictions are weighted based on the relative distances of the nearest neighbors.

댓글목록0

등록된 댓글이 없습니다.